Ordered dithering
From Avisynth wiki
(Difference between revisions)
(Created page with "todo") |
|||
| (One intermediate revision by one user not shown) | |||
| Line 1: | Line 1: | ||
| − | todo | + | todo - rewrite later |
| + | |||
| + | * http://forum.doom9.org/showthread.php?p=1509153#post1509153 | ||
| + | * http://www.virtualdub.org/blog/pivot/entry.php?id=151 | ||
| + | * https://engineering.purdue.edu/~bouman/ece637/notes/pdf/Halftoning.pdf (page 11) | ||
| + | |||
| + | It is ordered input dithering with a 02/31 recursive Bayer pattern (contrast normal 13/42 pattern) modified for equal sums in both rows and columns. Avery | ||
| + | |||
| + | Lee described the recursive generation in his blog a while ago on Dithering. I modified the resultant pattern for equal summing to eliminate an obvious | ||
| + | |||
| + | pattern visible in 16x16 cells. | ||
| + | |||
| + | The dithering is added as an extra lower 8 bits (4bits for chroma) on the input pixels, making 16bit data. This is then used as an index into a 65K LUT to | ||
| + | |||
| + | get the output 8 bit pixel. The dither pattern effectively replaces the 0.5 rounding term in generating the LUT. | ||
| + | |||
| + | without dithering: | ||
| + | |||
| + | i = 0..255 | ||
| + | mapR[i] = int(min(max(i * r/255.0, 0.0), 1.0) * 255.0 + 0.5); | ||
| + | example: r=2, i=16 => mapR[16] = int(32/255.0 * 255.0 + 0.5) = 32 | ||
| + | |||
| + | for (int y=0; y<vi.height; ++y) { | ||
| + | for (int x=0; x<vi.width; ++x) { | ||
| + | p[x] = map[p[x]]; | ||
| + | } | ||
| + | p += pitch; | ||
| + | } | ||
| + | |||
| + | with dithering: | ||
| + | |||
| + | i = 0..256*256-1 | ||
| + | mapR[i] = int(min(max(i * r - 127.5)/(255.0*256), 0.0), 1.0) * 255.0 + 0.5); | ||
| + | example: r=2, i=16*256 => mapR[16*256] = int((32*256 - 127.5)/(255.0*256) * 255.0 + 0.5) = 32 | ||
| + | bias = -127.5 ?? | ||
| + | |||
| + | for (int y=0; y<vi.height; ++y) { | ||
| + | const int _y = (y << 4) & 0xf0; | ||
| + | for (int x=0; x<vi.width; ++x) { | ||
| + | p[x] = map[ p[x]<<8 | ditherMap[(x&0x0f)|_y] ]; | ||
| + | } | ||
| + | p += pitch; | ||
| + | } | ||
| + | |||
| + | // 16x16 dither table: | ||
| + | _y = (y << 4) & 0xf0 = ... | ||
| + | ditherMap[(x&0x0f)|_y] = ... | ||
| + | |||
| + | y=15+3 => _y = (y << 4) & 0xf0 = 18/2^4 & (f*16 + 0*1) = 18/16 & 15*16 = 1 & 1111 0000 = 0 | ||
| + | y=15*16 => _y = (y << 4) & 0xf0 = 15*16/2^4 & (f*16 + 0*1) = 15 & 15*16 = 1111 & 1111 0000 = 0 | ||
| + | ditherMap[(x&0x0f)|_y] = ditherMap[(x & 1111) | 0] = ditherMap[x & 1111] | ||
| + | y=16*16 => _y = (y << 4) & 0xf0 = 16*16/2^4 & (f*16 + 0*1) = 16 & 15*16 = 1 0000 & 1111 0000 = 1 | ||
| + | ditherMap[(x&0x0f)|_y] = ditherMap[(x & 1111) | 1] | ||
| + | * so each 256 pixels, the offset in ditherMap is shifted by one. | ||
| + | |||
| + | // 4x4 dither table: | ||
| + | const int _y = (y << 2) & 0xC; | ||
| + | ditherMap4[(x&0x3)|_y]; | ||
| + | |||
| + | http://web.archive.org/web/20130512190753/http://white.stanford.edu/~brian/psy221/reader/Bayer.1973.pdf | ||
| + | |||
| + | [[Category:Glossary]] | ||
Latest revision as of 16:57, 20 September 2015
todo - rewrite later
- http://forum.doom9.org/showthread.php?p=1509153#post1509153
- http://www.virtualdub.org/blog/pivot/entry.php?id=151
- https://engineering.purdue.edu/~bouman/ece637/notes/pdf/Halftoning.pdf (page 11)
It is ordered input dithering with a 02/31 recursive Bayer pattern (contrast normal 13/42 pattern) modified for equal sums in both rows and columns. Avery
Lee described the recursive generation in his blog a while ago on Dithering. I modified the resultant pattern for equal summing to eliminate an obvious
pattern visible in 16x16 cells.
The dithering is added as an extra lower 8 bits (4bits for chroma) on the input pixels, making 16bit data. This is then used as an index into a 65K LUT to
get the output 8 bit pixel. The dither pattern effectively replaces the 0.5 rounding term in generating the LUT.
without dithering:
i = 0..255
mapR[i] = int(min(max(i * r/255.0, 0.0), 1.0) * 255.0 + 0.5);
example: r=2, i=16 => mapR[16] = int(32/255.0 * 255.0 + 0.5) = 32
for (int y=0; y<vi.height; ++y) {
for (int x=0; x<vi.width; ++x) {
p[x] = map[p[x]];
}
p += pitch;
}
with dithering:
i = 0..256*256-1
mapR[i] = int(min(max(i * r - 127.5)/(255.0*256), 0.0), 1.0) * 255.0 + 0.5);
example: r=2, i=16*256 => mapR[16*256] = int((32*256 - 127.5)/(255.0*256) * 255.0 + 0.5) = 32
bias = -127.5 ??
for (int y=0; y<vi.height; ++y) {
const int _y = (y << 4) & 0xf0;
for (int x=0; x<vi.width; ++x) {
p[x] = map[ p[x]<<8 | ditherMap[(x&0x0f)|_y] ];
}
p += pitch;
}
// 16x16 dither table: _y = (y << 4) & 0xf0 = ... ditherMap[(x&0x0f)|_y] = ... y=15+3 => _y = (y << 4) & 0xf0 = 18/2^4 & (f*16 + 0*1) = 18/16 & 15*16 = 1 & 1111 0000 = 0 y=15*16 => _y = (y << 4) & 0xf0 = 15*16/2^4 & (f*16 + 0*1) = 15 & 15*16 = 1111 & 1111 0000 = 0 ditherMap[(x&0x0f)|_y] = ditherMap[(x & 1111) | 0] = ditherMap[x & 1111] y=16*16 => _y = (y << 4) & 0xf0 = 16*16/2^4 & (f*16 + 0*1) = 16 & 15*16 = 1 0000 & 1111 0000 = 1 ditherMap[(x&0x0f)|_y] = ditherMap[(x & 1111) | 1] * so each 256 pixels, the offset in ditherMap is shifted by one. // 4x4 dither table: const int _y = (y << 2) & 0xC; ditherMap4[(x&0x3)|_y];